If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-4X-100=0
a = 1; b = -4; c = -100;
Δ = b2-4ac
Δ = -42-4·1·(-100)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{26}}{2*1}=\frac{4-4\sqrt{26}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{26}}{2*1}=\frac{4+4\sqrt{26}}{2} $
| 7b-7=55 | | 5x-8=16–7x | | 8x=-8x+80 | | 24x-20=76 | | 8x=-x+80 | | 2(3-4b)=50-2b-3(3b+11) | | -3x=-8x+80 | | 4(3n=1) | | 3(2x+4)-5(x-7)+8=2(x-6)+18 | | 2+5b=30 | | 27 −x+4x =−2x+33 | | -7^(14x)=0 | | 4x=7x-57 | | 6.7g+8=3.7g+14 | | 6.6g+6=2.6g+22 | | 6.9g+6=1.9g+31 | | 2x–35=135 | | 3m=5+(m/2) | | 3a+5=10a+1 | | (3n-1)^2+2=18 | | X=510-2x | | 4x^2-12x=2 | | 9x+5=5x+5 | | 42-5x=1 | | 12d^2+8d-15=0 | | -13x+3=37 | | 5x–(3+2x)=3. | | 25+9x=3-2x | | 8x-(x+3)=3(2x+1) | | 9-24u-6=u-15 | | x+x^2*2=220 | | 3(n−36)−98=−11n+200 |